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Award Number W81XWH-05-1-0031 
A. Introduction 

The proposal for DOD Award #W81XWH-05-1-0031 focused on the systematic mapping of large-
scale genetic alterations in prostate cancer, and relating these mutations to prostate cancer progression. 
To that end, the proposal suggested the application of single nucleotide polymorphism (SNP) array 
technology to characterize large-scale genetic alterations in the prostate cancer genome. 

1. High-resolution single nucleotide polymorphism arrays 
SNPs are the most common genetic variation in the human genome; more than 6,000,000 have been 

identified (2). The use of single-nucleotide polymorphisms to study the germline genetic susceptibility to 
disease is well appreciated and an evolving technology designed to conduct such studies is the use of 
oligonucleotide arrays to interrogate these SNP markers in a high-throughput, highly parallel fashion (3
5). These oligonucleotide arrays specifically detect the two different alleles of each SNP (Figure 1). The 
most advanced commercially available 100K arrays detect 116,204 SNPs.  With a median intermarker 

Figure 1: View of a probe set for a single SNP 
showing a homozygous “A” call. For each SNP, 
40 oligonucleotide probes are tiled onto SNP arrays 
interrogating 116,204 SNPs across the genome. 
These include perfect match (pm) and mismatch 
(mm) probes directed against each allele. The SNP 
position slides 5’ to 3’ among the pm or mm probes 
to each allele. The fluorescence pattern indicates 
which alleles are present; the fluorescence intensity 
indicates the quantity of bound DNA. 

distance of 8.9 kb, this represents greater than 5 SNPs 
per gene, affording state-of-the art resolution for large-
scale genotyping purposes (6). 

To prepare target for the 100K arrays, genomic DNA 
is digested with XbaI or HindIII (in separate reactions). 
HindIII and XbaI linkers are ligated and single-primer 
PCR amplification is carried out to amplify fragments 
ranging from 200-2000 bp, resulting in a partial genome 
representation. The fragments are labeled with 
streptavidin, fragmented and hybridized to arrays that 
contain the 58,000 probe sets for either the XbaI or 
HindIII digest. The probe set for each SNP consists of 
10 perfect match (pm) probes to each allele, along with 
10 mismatch (mm) probes, for a total of 40 probes. A 
detailed description of the protocols and technology for 
these 100K SNP arrays is available at 

www.affymetrix.com/support/technical/datasheets/100k_datasheet.pdf. 
The scale and precision with which high-density SNP arrays interrogate independent alleles 

prompted our group (led by William Sellers and Matthew Meyerson) to spearhead efforts applying this 
technology to the analysis of somatic genetic alterations present in human malignancies. Several 
features of SNP arrays suggested that they might constitute an ideal platform for cancer genomic 
analyses: 1, determination of allele status across cancer genomes provided a basis for large-scale, high-
precision loss of heterozygosity (LOH) analysis; 2, probe set hybridization yielded a signal whose 
intensity also reflected the copy number at that locus; and 3, the resolution afforded by SNP array marker 
densities exceeded that of most CGH options. 

a. High-resolution loss of heterozygosity analysis 
The somatic conversion of heterozygous germline alleles to a homozygous state (LOH) may occur 

through hemizygous deletion alone (resulting in concomitant copy loss) or followed by gene duplication 
(copy-neutral LOH).  Interestingly, copy-neutral LOH, which is undetectable by conventional CGH 
methods, represents up to 80% of LOH events in some tumor sets (7), and the primary mechanism of 
LOH in particular genomic regions of individual cancer types (8, 9). Considerable experimental evidence 
supports the notion that LOH represents a key mechanism for tumor suppressor inactivation. Indeed, 
nearly all common tumor suppressor genes occur in regions that frequently undergo LOH (prominent 
examples include p16, PTEN, pRB, and p53). 

Published data by the Sellers and Meyerson groups and by others demonstrate that SNP arrays 
provide high-resolution maps of LOH when one compares the pattern of heterozygosity in the 
constitutional germline DNA to the pattern seen in the tumor (10-20). More recently, we have developed 
methods of analyzing homozygous allele frequencies and regions of linkage disequilibrium to map 
regions of LOH without the use of paired normal germline DNA samples (21). This has allowed us to map 
LOH in cell lines and xenografts and to determine the similarity or differences in this data compared to 
authentic human tumors. 
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Award Number W81XWH-05-1-0031 
b. Genome-wide maps of copy number aberrations 

Our group and others have found that comparison of signal intensities derived from each SNP probe 
(instead of allele call data) to corresponding signal data from normal genomes allows determination of 
copy number changes present within tumor samples (22, 23). The concordance with quantitative PCR 
has generally been excellent, though high-level copy number gains are often underestimated on SNP 
arrays, presumably due to saturation effects. Various cancer genomes are now beginning to be mapped 
in this way (24, 25), including analyses by our group, using 100K arrays, of the lung cancer genome (26) 
and of the NCI60 cell line set (27). The high resolution of the 100K arrays allowed the discovery, in this 
latter case, of the novel oncogene MITF in melanoma cell lines and metastatic samples. 

To that end, the specific aims proposed were:  

1. To isolate DNA from 50 localized and 50 metastatic prostate cancers after laser-capture 
microdissection, along with DNA from corresponding germline tissue. 

2. To generate genome-wide high-resolution maps of LOH and copy-number alterations using 
SNP arrays containing probes for 100,000 markers. 

3. To identify and validate candidate somatic genetic alterations differing in prevalence between 
localized and metastatic cancers, and develop markers for clinical association studies. 

Significant progress has been made in all 3 specific aims. However, due to unanticipated difficulties 
with respect to Specific Aim 1, the number of tumors analyzed to date is smaller than the number set out 
in Specific Aim 1, and completion of the validation studies in Specific Aim 3 is still underway.  The 
progress and difficulties will be outlined in the next section. 

B. Body 

1. Specific aim #1: To isolate DNA from 50 localized and 50 metastatic prostate cancers 
after laser-capture microdissection, along with DNA from corresponding germline 
tissue. 

Reconstitution experiments have shown (11) that contamination of cancer cells with greater than 
10% normal cell genomes results in a significant degradation in the ability to determine LOH. Prostate 
cancers tend to have large concentrations of intervening stroma. Thus, to apply SNP array technology to 
the study of prostate cancer, samples must be enriched for tumor. In this aim, we attempt to preserve the 
detection of both LOH events and copy number changes in prostate samples using laser capture 
microdissection (LCM)-based methods for tumor enrichment.  

Our experience has shown that LCM of 2 mm2 of prostate tissue takes between 2-4 hours and yields 
50-100 ng of DNA. A 100K SNP array set requires 500 ng of DNA; to produce this amount of DNA on a 
large number of tumors quickly becomes prohibitively time-consuming. Fortunately, several methods of 
whole genome amplification (WGA) exist (28). Among the most promising of these is multiple 
displacement amplification (MDA) (29), which makes use of a polymerase with exonuclease activity and 
random primers to perform isothermal amplification, with yields as high as 10,000-fold or greater. As 
opposed to PCR-based methods, the DNA produced has long fragment lengths and low error rates. We 
have shown (16) that, using 10 ng of high-quality template DNA, one can produce tens of micrograms of 
DNA with MDA methods using the Φ29 polymerase. The DNA product preserves genotyping information 
with 99.8% accuracy, and copy numbers determined from this DNA are 87% concordant with the 
unamplified template DNA. Much of the 13% discordance in copy number estimates was not functionally 
important, as it was due to lower saturation levels in WGA DNA—meaning very high amplifications (copy 
number 6 or greater) were not seen to be as high in WGA as unamplified DNA—although they were 
noted to be high in both groups. Therefore, we have attempted to apply MDA to DNA obtained from 
laser-capture mcirodissected tissue 

This section will describe progress in 3 sub-aims: 
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Award Number W81XWH-05-1-0031 
a. Characterization of LCM and WGA conditions for optimal reproducibility 
b. Data generation from primary and metastatic tumors 

a. Characterization of LCM and WGA conditions for optimal reproducibility 
Early on, we found that DNA from LCM can also serve as a template for WGA, providing product that 

gives similar results on SNP arrays to unamplified DNA. Among four highly enriched tumors, high-density 
SNP array data was obtained after either macrodissection (either a 2 mm cubic biopsy of tissue, or tissue 
needle-dissected from a glass slide) or laser capture microdissection. Overall call rates, reflecting the 
percentage of SNPs for which genotypes could be assigned, averaged 93.7% and 93.6% for 
macrodissected and microdissected tissue, respectively. Moreover, concordance rates between 
genotype calls from macrodissected and microdissected tissue averaged 98.2%. Although this 
concordance rate is slightly worse than that obtained with the highest quality DNA (99.85% in our hands 
(16)), it is high enough to accurately assign regions of LOH (Figure 2). 

Figure 2: High-quality SNP 
array data generated after laser 
capture microdissection and 
whole genome amplification. 
Top: Data generated from a highly 
pure tumor after macrodissection 
is displayed alongside data from 
the same sample after LCM and 
WGA. Genotype calls are 
displayed in the left panel (yellow 
– AB (het), red – AA, blue – BB, 
white – No Call), LOH inferences 
in the middle panel (blue – LOH, 
yellow – retention), and signal 
intensities in the right panel (red – 
high, white – normal, blue – low). 
A homozygous deletion on chr. 8 
(gray arrow) and regions of LOH 
(black and white arrows) are 
indicated. 

Figure 3: Preservation of signal 
intensity variations after laser 
capture microdissection and 
whole genome amplification. 
Normalized signal intensities for a 
second highly pure tumor are 
displayed (as in Figure 5, right 
panel), along with graphs of those 
signal intensities on either side. Both 
amplifications and deletions appear 
highly reproducible after laser 
capture microdissection and whole 
genome amplification. 

Likewise, the ability to identify copy number aberrations is 
preserved (Figures 2,3). The main concern here is due to the potential 
uneven nature of amplification by WGA. In fact, we know that certain 
regions of the genome are better represented in WGA product than 
others, with up to 6-fold variations between different regions (29). As 
long as these biases are consistent, however, normalization against 
control samples that have undergone whole genome amplification 
under similar conditions will correct for them, leaving only the 
underlying signal intensity changes reflecting copy number 
aberrations inherent in the sample. To test how consistent these 
biases are along a range of WGA conditions, DNA obtained from 
laser capture microdissected benign prostate tissue was amplified 
under varying conditions.  

Specifically, as the amount of WGA template was increased from 
4 ng to 64, the SNP array signal intensities became more similar to 
unamplfiied controls (Table 1). However, signal intensities from 
LCM/WGA were highly consistent, when compared against DNA 
undergoing LCM/WGA under similar conditions (mean variance 0.11, same as unamplified controls; 
Table 1). Moreover, this consistency remained even when DNA from LCM was whole genome amplified 
on different days (variance = 0.12), or using different lots of polymerase, dNTP, and random primers 
(variance = 0.10). Finally, the signal intensities from LCM/WGA appear robust to 2-fold changes in 
amount of DNA template (variance = 0.13). 

With optimal conditions for LCM and WGA determined in benign prostate tissue, we initiated data 
collection by performing LCM on primary tumors along with germline tissue from paired seminal vesicles. 
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Award Number W81XWH-05-1-0031 
Unfortunately, we soon came Table 1.  Mean variance between normalized SNP array signal intensities obtained from 
to find that histology affects WGA product using various amounts of template DNA, versus signal intensities from 
the quality of DNA obtained unamplified DNA. Template DNA used for WGA was produced from LCM of benign 

after LCM and WGA.  For 

8 ng 16 ng 32 ng 

0.30 0.26 0.24 0.23 

-

prostate tissue. 

instance, in one experiment Template 4 ng 64 ng Unamplified*we performed LCM and amount 
WGA on 3 primary prostate 
cancers along with paired 
uninvolved seminal vesicles. Variance 

from 0.23 0.11In each case, 32 ng of DNA unamplified 
was used from the laser DNA 
captured cells as template for 
WGA, and 250 ng of WGA Variance 

product was used for from 
similarly 0.11restriction digest, prepared

amplification, and DNA 
hybridization to 50K Xba *Variance between normalized signal intensities from repeat SNP arrays using the same 
arrays. WGA was performed unamplified DNA
using the same reagents and 
at the same time, for all samples. However, genotyping call rates were excellent for the germline DNA 
obtained from the seminal vesicles, ranging from 95-98%, and were low for the tumors, ranging from 85
90%. Moreover, signal intensity profiles were much noisier for the tumor DNA (data not shown), 
precluding high-resolution copy number analysis. 

As both the tumor and normal seminal vesicle were resected from the patient simultaneously, the 
cause of the difference in DNA quality between them is likely due to either 1) the differing tissue 
characteristics between the tumor and normal tissue, or 2) differences in the laser capture process itself. 
In the case of 2), we recognized that small nests of cancer cells have to be captured from the tumor, 
whereas large regions of normal tissue could be captured. The result is that the captured tumor cells, on 
average, lie closer to the line cut by the laser. Therefore, we hypothesized that the laser was causing 
direct damage to the DNA. In fact, when we obtained DNA from benign prostate tissue after conducting 
LCM using small shapes such that all regions collected lay close to the laser cut line, we found that SNP 
call rates decreased (Table 2).   

To improve on these results, we purchased an Arcturus Veritas laser capture microdissection 
machine, allowing LCM to be conducted by capturing cells individually using an IR laser whose energy is 
focused on melting a polymer that sticks to the cells, thereby reducing the amount of energy going into 
the tissue itself.  As expected, use of the infrared laser improved the call rate for DNA obtained from 
small shapes, although it appeared to lead to worse results when large 
shapes are used—possibly due to overall heating of the tissue when 
the IR laser is applied to large regions (Table 2). 

Using the infrared laser for LCM of small nests of tumor, we then 
tested whether use of the infrared laser could enable us robustly to 
obtain high-quality SNP array data from primary prostate cancer 
tissue. Unfortunately, despite robust success in benign tissue, SNP 
array call rates obtained from primary prostate cancers frequently 
ranged as low as 81%. 

b. Data generation from primary and metastatic 
tumors 

Through the Gelb Center at the Dana-Farber Cancer Institute, we 
have IRB- approved access to several hundred fresh frozen primary 
prostate cancers, along with uninvolved seminal vesicles. Metastatic 
tumors have been obtained from several sources, including hormone-
naïve lymph node metastases from Dr Mark Rubin, further metastatic 

Table 2.  SNP array call rates as a 
function of LCM shape size and 
laser used. 

Shape size Laser Call rate (diameter) 

0.5 um UV 81% 

0.5 um IR 92% 

1.5 um UV 92% 

1.5 um IR 83% 
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Award Number W81XWH-05-1-0031 
tissue through the rapid autopsy programs at the University of Michigan (aided by Drs Rubin and 
Kenneth Pienta) and University of Washington (aided by Dr Lawrence True), and bone metastases 
through Drs Steven Balk and Dr Mary-Ellen Taplin.  Due to the difficulties with LCM followed by WGA 
cited above, we aimed in LCM to obtain sufficient unamplified DNA for SNP array analysis.  We found 
this approach, although time-consuming, reliably provides high-quality data.  As of this time, we have 
high-quality, high-resolution SNP array data on 84 prostate tumors, including 24 primary tumors, 38 
metastatic tumors, and 22 model systems. 

2. Specific aim #2: To generate genome-wide high-resolution maps of LOH and copy-
number alterations using SNP arrays containing probes for 100,000 markers. 

We currently have a comprehensive analysis of the data generated from 63 of these tumors. 

a. Generation of LOH maps 

In the application for this award, we described a method we had developed to identify regions of LOH 
without the use of paired normal DNA. Although we are obtaining paired normal DNA for all primary and 
metastatic tumors in this study, we also have SNP array data from prostate cancer model systems for 
which paired normal DNA is unavailable. The method used to determine LOH without paired normal DNA 
was originally developed using data from SNP arrays probing 10,000 loci throughout the genome. When 
applying the method to 100K SNP array data, we found that the haplotype structure of the genome 
reduced the specificity of the method, and improved the method to take this haplotype structure into 
account. This method has now been published (21); Appendix I. 

b. Generation of copy-number maps 

For the generation of copy-number estimates, both systematic and random errors in signal intensity 
data have to be minimized. We found that the main source of systematic error is batch effect, whereby a 
batch of samples that simultaneously undergo DNA digestion, amplification, labeling, and hybridization to 
arrays, will have similar signal intensity alterations (high or low signal intensity) compared to samples 
processed at other times. This, in turn, leads to the appearance of amplicons and deletions restricted to 
that batch (Figure 4). Strict control of experimental conditions and normalization against reference 
samples from the same batch can minimize, but tend not to eliminate, these batch effects. In turn, these 
batch effects can lead to the identification of spurious regions of recurrent amplification and deletion. 

We posited that the identifying characteristic of an alteration due to batch effect is that the alteration 
consistently occurs within one batch, and consistently does not occur within other batches of similar 
samples. Therefore, for each batch containing at least 5 samples, we identified the distribution of signal 
intensities for each SNP, and compared this using a T-test with the distribution of signal intensities in all 
other batches. When the p value was less than 0.001, we considered that the SNP had undergone a 
systematic alteration due to batch effect, and subtracted a constant amount from the signal intensities at 
that SNP for all samples in the batch, so that the mean signal in that batch equaled the mean signal in all 
other batches (Figure 4). 

Whereas systematic errors can lead to the identification of spurious regions of amplification and 
deletion, random errors tend to reduce our sensitivity to identifying regions of real importance. Most 
importantly, the error in the signal intensity measured at a given SNP can lead to that SNP being 
spuriously identified as amplified or deleted, leading to downstream errors in estimates of the frequency 
of lesions at that SNP locus. A variety of smoothers, developed for CGH data, reduce noise levels at 
each locus by involving information from neighboring loci (30). We have found GLAD (31), which 
identifies segments with a constant copy number and averages the signal intensities across all loci in 
each segment, provides the most accurate results in a reasonable amount of computational time (data 
not shown). Several alternative software packages (dChipSNP, CNAT, CNAG, GIM) (22, 23, 32, 33) also 
exist to convert probe-level data into overall SNP-specific signal intensities. Preliminary results seem to 
point to CNAG as producing the most optimal signal-to-noise ratios (data not shown). 
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Figure 4: Batch effect and correction. Signal intensity data are displayed for 61 samples, each as a column. These samples 
were run in 7 batches, designated by different colors in the top panel. The normalized intensities for a set of 40 consecutive 
SNPs are displayed (as in Figure 2) in the middle panel. In the batch designated in blue (top panel), several adjacent SNPs 
appear to have consistently high signal intensities, giving the false appearance of a recurrent amplicon. Data corrected for this 
batch effect are displayed in the bottom panel. 

c. Identification of significant chromosomal events 

We posited that information as to the importance of a region in sustaining cancer lay not only in the 
frequency with which that region undergoes lesions, but also the also in the amplitude of the lesions that 
occur. Therefore, we designed scores for amplification and deletion that included both sources of 
information. Namely, for each SNP locus we calculate: 
 Amp = famp x log2(Ŝamp), and 
 Del = fdel x -log2(Ŝdel) (1) 
where famp and fdel represent the frequency of amplification and deletion, respectively, and Ŝamp and Ŝdel 
represent the average normalized signal intensity of samples with amplifications and deletions.  We 
scored LOH by the frequency alone. 

The significance of each particular Amp, Del, or LOH score is then determined by comparing it to 
similar scores determined from all permutations of the data, allowing the calculation of p values and, to 
correct for multiple hypothesis testing, False Discovery Rate (FDR) q values (34). 

When applied to our data from 63 prostate cancers, we obtained the Amp, Del, and LOH scores 
displayed in Figure 5. Regions of amplification and deletion having q values less than 0.01 (i.e. having 
less than a 1% probability of occurring by chance alone) were designated as significant. The region 
surrounding the androgen receptor is the most significantly amplified, whereas the region surrounding 
PTEN is the most significantly deleted. 

Multiple other regions of significant amplification and deletion are seen.  Within these, the most likely 
locations of the targeted oncogenes or TSGs were felt to be the regions of minimal q value. Table 3 
shows the boundaries of some of these and compares them to locations of known oncogenes and TSGs. 
The accuracy in identifying these known targets is remarkable, and suggests the candidate genes in 
regions with no known targets have a high likelihood of also being oncogenes and TSGs. 

In addition to identifying recurrent regions of chromosomal loss or gain, we considered whether 
recurrent breakpoints (sites where copy-number changes occur) might point to fusions between distant 
loci. In particular, we identified all breakpoints that recurred more than twice across the samples in our 
dataset, and then looked for correlations between any two of these recurrent breakpoints. We found such 
a correlation between recurrent breakpoints in 21q22.2 and 21q22.3 (Fig. 6). Fusions between 
TMPRSS2 and ERG were recently noted (35) in a large proportion of prostate cancers, and in fact all of 
our samples with evidence of this deletion were confirmed to have TMPRSS2-ERG fusions by 
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Table 3. Locations of regions of minimal q value against 
known gene targets (red denotes amplified and blue 
deleted regions) 

Location 
(Chro:Mb-Mb) 

# of genes 
in region 

Putative 
gene target 

Distance from 
putative target 

8:128.08-128.16 0 MYC 0.54 Mb 

X:65.53-65.83 1 AR Within region 

10:89.35-89.52 1 PTEN Within region 

13:46.72-46.87 2 RB1 Within region 

18:57.47-57.65 1 unknown -

Figure 5: Regions of significant amplification, deletion, and LOH in a set of 63 prostate cancers. FDR-corrected q 
values (log scale, left), associated with Amp and Del scores across the genome, are displayed. Regions with a q value less 
than 0.01 (red line) were considered significantly altered. Among amplifications, the most significant region overlaps the 
androgen receptor (labeled as AR). Among deletions, the region containing PTEN scored as most significant. 

assessment of the cDNA (data not shown). The 
presence of this interstitial deletion leading to gene 
fusion was further confirmed by FISH (Fig. 6) and 
has now been published (36). 

3. Specific aim #3: To identify and 
validate candidate somatic genetic 
alterations differing in prevalence 
between localized and metastatic 
cancers, and develop markers for 
clinical association studies. 

In addition to identifying significant regions of amplification and deletion, our analysis characterizes 
the lesions in each sample. Thus, we can immediately identify correlations between the presence of any 
two or more lesions, as well as correlations between the presence of a set of lesions and phenotype. 
Table 4 lists the lesions that occur more frequently in metastatic than localized tumors, with q value less 
than 0.05. Among these, AR amplification and deletion of 9p and PTEN appear to be late events, never 
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primaries. 
However, 

amplification of 
MYC and deletion 
of 18q do occur in 
primaries, so their 
enrichment in 

metastases 
suggests they may 
mark localized 
tumors that are 
likely to recur. 

Intriguingly, 
although the gene 
targeted by 18q 
losses is unknown, 
the region with 

Fig. 6: Recurrent interstitial deletion fusing TMPRSS2 and ERG. A deletion with recurrent 
boundaries immediately adjacent to the genes TMPRSS2 and ERG was noted across multiple 
samples (A), only in samples known to have undergone fusion of these genes by cDNA analysis. 
FISH assays (B) highlighting TMPRSS2 (red) and a region near ERG but within the interstitial 
deletion (green). The two probes are normally adjacent to each other, producing a yellow signal. 
Loss of the green signal, leading to visualization of an independent red signal, confirms deletion 
of the region next to ERG. 

occurring in 

minimal q value 
contains only 1 
gene. To assess 
the robustness of 
this finding, we 
excluded each 
sample from our 

dataset in turn and recalculated the boundaries of this minimal 
region. We found the boundaries expanded only to include a 
maximum of three genes. One of these is a cadherin, immediately 
suggesting a potential role in metastasis.  Another was found, in the 
two expression studies of localized and metastatic cancer that 
assayed it (37, 38), to have lower expression in metastatic than 
localized tumors—although localized tumors had similar expression 
levels to benign tissue (Fig. 7). This is consistent with our finding 
that it is in a region deleted more frequently in metastases. 

Table 4.  Aberrations more commonly 
seen in metastases 

Aberration Relative Risk q-value 

AR amplified Infinite 0.001 

PTEN lost Infinite 0.001 

9p lost Infinite 0.04 

MYC amplified 3.7 0.04 

18q lost 2.6 0.04 

Fig. 7: PIGN expression in localized and metastatic 
prostate cancer, compared to benign prostate. Data from 
the two published studies with PIGN levels in benign prostate 
and localized and metastatic prostate cancer are displayed as 
in Oncomine (1). PIGN is one of three candidate TSG targets 
of the 18q deletion, which we see more commonly in 
metastases than primaries. 

Moreover, we note losses of the same region of 
18q both by LOH and deletions (Fig. 5). 
Therefore, we have now validated these 
deletions by developing a FISH assay 
specifically for this region (Fig. 8). 

4. Key Research Accomplishments 

• Developed method for determination of LOH 
without paired normals that takes into 
account haplotype structure 

• Developed methods for reducing signal-
intensity errors, including systematic errors 
due to batch effects 

• Developed methods for identifying 
significant regions of copy-number 
aberration and validated 18q losses 

• Correlated several regions, including 18q 
losses, with progressive cancer 

• Identified interstitial deletions underlying the 
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Fig. 8: FISH validation of 18q 
losses. The target probe (red), 
directed to the region of minimal 
q value on 18q, has a lower 
copy number than the reference 
probe (green), directed to a 
region infrequently altered in 
prostate tumors. 

oncogenic fusion event between TMPRSS2 and ERG 

5. Reportable Outcomes 

• Publication: Dutt A and Beroukhim R, “Single nucleotide 
polymorphism array analysis of cancer”, Cur. Opin. Oncol., in press. 

• Publication: Lee JC, Vivanco I, Beroukhim R, Huang JHY, Feng WL, 
DeBiasi RM, Yoshimoto K, King JC, Nghiemphu P, Yuza Y, Xu Q, 
Greulich H, Thomas RK, Paez JG, Peck TC, Linhart DJ, Glatt KA, 
Getz G, Onofrio R, Ziaugra L, Levine RL, Gabriel S, Kawaguchi T, 
O’Neill K, Khan H, Liau LM, Nelson S, Rao PN, Mischel P, Pieper 
RO, Cloughesy T, Leahy DJ, Sellers WR, Sawyers CL, Meyerson M, 
Mellinghoff IK, “EGFR activation in glioblastoma through novel 
missense mutations in the extracellular domain”, PLoS Medicine, in 
press. 

• Publication: Perner S*, Demichelis F*, Beroukhim R*, Schmidt FH, 
Mosquera JM, Setlur S, Tchinda J, Tomlins SA, Hofer MD, Pienta 

KG, Kuefer R, Vessella R, Sun XW, Meyerson M, Lee C, Sellers WR, Chinnaiyan AM, Rubin MA, 
“TMPRSS2:ERG Fusion-Associated Deletions Provide Insight into the Heterogeneity of Prostate 
Cancer”, Cancer Res. 2006; 66:8337. 

• Publication: Garraway LA, Weir BA, Zhao X, Widlund H, Beroukhim R, Berger A, Rimm D, Rubin 
MA, Fisher DE, Meyerson ML, Sellers WR, “’Lineage addiction’ in human  cancer: lessons from 
integrated genomics”, Cold Spring Harb Symp Quant Biol. 2006; 70:25. 

• Publication: LaFramboise T, Weir BA, Zhao X, Beroukhim R, Li C, Harrington D, Sellers WR, 
Meyerson M, “Allele-specific amplification in cancer revealed by SNP array analysis”, PLoS Comput 
Biol 2005;1:e65. 

• Publication: Beroukhim R*, Lin M*, Park Y, Hao K, Zhao X, Garraway LA, Fox EA, Hochberg EP, 
Mellinghoff IK, Hofer MD, Descazeaud A, Rubin MA, Meyerson M, Wong WH, Sellers WR, and Li C, 
“Inferring loss-of-heterozygosity from unpaired tumors using high-density oligonucleotide SNP 
Arrays”, PLoS Comput Biol. 2006; 2:e41. 

• Publication: Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto 
K, Huang JH, Chute DJ, Riggs BL, Horvath S, Liau LM, Cavenee WK, Rao PN, Beroukhim R, Peck 
TC, Lee JC, Sellers WR, Stokoe D, Prados M, Cloughesy TF, Sawyers CL, Mischel PS, “Molecular 
determinants of the response of glioblastomas to EGFR kinase inhibitors”, NEJM. 2005;353:2012-24. 

• Publication: Garraway LA, Weir BA, Zhao X, Widlund H, Beroukhim R, Berger A, Rimm D, Rubin 
MA, Fisher DE, Meyerson ML, Sellers WR, "’Lineage Addiction’ in Human Cancer: Lessons from 
Integrated Genomics”, Cold Spring Harb Symp Quant Biol. 2005;70:1-10. 

• Publication: Koochekpour S, Zhuang YJ, Beroukhim R, Hsieh CL, Hofer MD, Zhau HE, Hiraiwa M, 
Pattan DY, Ware JL, Luftig RB, Sandhoff K, Sawyers CL, Pienta KJ, Rubin MA, Vessella RL, Sellers 
WR, Sartor O, “Amplification and overexpression of prosaposin in prostate cancer”, Genes 
Chromosomes Cancer. 2005; 44:351-64. 

• Publication: Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, Beroukhim 
R, Milner DA, Granter SR, Du J, Lee C, Wagner SN, Li C, Golub TR, Rimm DL, Meyerson ML, Fisher 
DE, Sellers WR, “Integrative genomic analyses identify MITF as a lineage survival oncogene 
amplified in malignant melanoma”, Nature. 2005; 436:117-22 

• Publication: Zhao X, Weir BA, LaFramboise T, Lin M, Beroukhim R, Garraway L, Beheshti J, Lee 
JC, Naoki K, Richards WG, Sugarbaker D, Chen F, Rubin MA, Janne PA, Girard L, Minna J, 
Christiani D, Li C, Sellers WR, Meyerson M, “Homozygous deletions and chromosome amplifications 
in human lung carcinomas revealed by single nucleotide polymorphism array analysis”, Cancer Res. 
2005; 65:5561-70. 

* equal contributors 

6. Conclusions 

Page 12

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Mellinghoff+IK%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Wang+MY%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Vivanco+I%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Haas%2DKogan+DA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Zhu+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Dia+EQ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Lu+KV%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Yoshimoto+K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Yoshimoto+K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Huang+JH%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Chute+DJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Riggs+BL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Horvath+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Liau+LM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Cavenee+WK%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Rao+PN%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Beroukhim+R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Peck+TC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Peck+TC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Lee+JC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Sellers+WR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Stokoe+D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Prados+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Cloughesy+TF%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Sawyers+CL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Mischel+PS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Garraway+LA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Weir+BA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Zhao+X%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Widlund+H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Beroukhim+R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Berger+A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Rimm+D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Rubin+MA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Rubin+MA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Fisher+DE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Meyerson+ML%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Sellers+WR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Koochekpour+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Zhuang+YJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Beroukhim+R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Hsieh+CL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Hofer+MD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Zhau+HE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Hiraiwa+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Pattan+DY%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Ware+JL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Luftig+RB%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Sandhoff+K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Sawyers+CL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Pienta+KJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Rubin+MA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Vessella+RL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Sellers+WR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Sellers+WR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Sartor+O%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Garraway+LA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Widlund+HR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Rubin+MA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Getz+G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Berger+AJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Ramaswamy+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Beroukhim+R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Beroukhim+R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Milner+DA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Granter+SR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Du+J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Lee+C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Wagner+SN%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Li+C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Golub+TR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Rimm+DL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Meyerson+ML%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Fisher+DE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Fisher+DE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Sellers+WR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Zhao+X%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Weir+BA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22LaFramboise+T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Lin+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Beroukhim+R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Garraway+L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Beheshti+J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Lee+JC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Lee+JC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Naoki+K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Richards+WG%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Sugarbaker+D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Chen+F%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Rubin+MA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Janne+PA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Girard+L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Minna+J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Christiani+D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Li+C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Sellers+WR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Meyerson+M%22%5BAuthor%5D


Award Number W81XWH-05-1-0031 
During the course of this award, significant progress has been made in all 3 specific aims of this 

grant, including determination of LOH and copy number maps using 100K SNP array data from 84 
prostate tumors and use of these maps to identify chromosomal aberrations that appear to be playing a 
significant role in prostate cancer. Some of these regions appear to correlate with prostate cancer 
progression, and deletion of one of these regions has been validated by FISH.  Additionally, candidate 
gene targets have been identified for several of these regions.  In one case, deletions of 21q have been 
shown to comprise a mechanism leading to generation of the recently described oncogenic TMPRSS2
ERG fusion event. 
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ABSTRACT 

Background 

Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled 

catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints 

on kinase activity, can promote malignant transformation, and appear to be a major determinant 

of response to kinase inhibitor therapy [1,2]. 

Methods and Findings 

Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR) 

kinase inhibitors in glioblastoma [3-5], we have sequenced the complete EGFR coding sequence 

in glioma tumor samples and cell lines.  We identified novel missense mutations in the 

extracellular domain of EGFR in 18/132 (13.6 %) glioblastomas and 1/8 (12.5 %) glioblastoma 

cell lines. These EGFR mutations were associated with increased EGFR gene dosage and 

conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells.  Cells 

transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR 

kinase inhibitors. 

Conclusion 

Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR 

activation and may help identify patients who can benefit from EGFR kinase inhibitors for 

glioblastoma. 
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INTRODUCTION 

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that regulates 

fundamental processes of cell growth and differentiation.  Deletion of the EGFR gene is 

embryonically lethal in mice and increased EGFR signaling has been linked to a variety of 

human malignancies.  Mechanisms for oncogenic conversion of EGFR in cancer include EGFR 

gene amplification, structural rearrangements of the receptor, overexpression of EGF-family 

ligands by tumor cells and/or surrounding stroma, and – as recently shown in lung cancer – 

activating mutations in the EGFR kinase domain [6]. 

The evidence for a role of EGFR in oncogenesis is particularly compelling in 

glioblastoma, the most aggressive human brain tumor [7].  About 40 % of glioblastomas show 

amplification of the EGFR gene locus [8] and about half of these tumors express a mutant 

receptor (EGFRvIII) that is constitutively active due to an in-frame truncation within the 

extracellular ligand-binding domain [9-11].  Perhaps the strongest evidence for a role of EGFR 

in the biology of glioblastoma stems from clinical trials where 15-20 % of glioblastoma patients 

experienced significant tumor regression in response to small molecule EGFR kinase inhibitors 

[4,5]. Our recent data indicates that expression of EGFRvIII in the context of an intact PTEN 

pathway is associated with these clinical responses [4]. 

To explore the possibility that EGFR might be the target of oncogenic mutations outside 

the kinase domain, we sequenced the entire EGFR coding region in a panel of 151 glioma tumors 

and cell lines. We report the discovery of novel extracellular missense mutations in EGFR in 

13.6 % (18/132) of human glioma samples.  These mutations are oncogenic in cellular 

transformation assays and sensitize transformed cells to the antiproliferative effects of small 

molecule EGFR kinase inhibitors.  Only one of our clinical glioma samples (< 1 %) harbored a 
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mutation within the EGFR kinase domain, supporting the recent conclusion from other groups 

that EGFR kinase domain mutations appear to be a rare event in this disease [12,13] [14]. 

Interestingly, further examination of 119 primary lung tumors from our previous study [15] 

showed a distinctly different distribution of EGFR mutations with EGFR kinase domain 

mutations in 13.4 % (16/119) of cases and no evidence for extracellular EGFR missense 

mutations. These results indicate that mechanisms of oncogenic kinase conversion may differ 

considerably between tumor types and warrant an extension of current kinome resequencing 

efforts beyond the kinase domain.  

METHODS 

DNA samples.  Genomic DNA was extracted from eight glioblastoma cell lines (A172, SF268, 

SF295, SF539, T98G, U87, U118, and U251) and 143 fresh frozen glioma samples.  The clinical 

glioma samples comprised of glioblastomas (n = 132), WHO grade III anaplastic astrocytomas (n 

= 3), grade III mixed gliomas (n = 4), and grade III oligodendrogliomas (n = 4).  Germline 

genomic DNA was extracted from peripheral blood samples.  To confirm the match between 

germline and tumor DNA for each patient, we performed mass spectrometric genotyping of 24 

single-nucleotide polymorphism (SNP) loci.  These loci included 23 SNP loci represented on 

both 50K Xba and Hind arrays (Affymetrix, Santa Clara, CA) and one AmelXY locus for sex 

determination (Supplementary Table S1). Collection and analysis of all clinical samples was 

approved by the UCLA Institutional Review Board. 

Reagents. Retroviral constructs for EGFR and EGFRvIII were generously provided by Dr. 

David Riese 2nd and Dr. Webster Cavenee.  Erlotinib was purchased from WuXi Pharmatech 

(Shanghai, China). The following antibodies were used in this study: anti-EGFR, anti-phospho
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Y1068 EGFR, anti-phospho-Y845-EGFR, anti-phosphoinositide 3-kinase (PI3K) p85. (Cell 

Signaling Technology, Beverly, MA); anti-phosphotyrosine 4G10 (Upstate Biotechnologies, 

Waltham, MA); anti-actin, anti-ERK1/2, and anti-P-ERK1/2 (Santa Cruz Biotechnology, Santa 

Cruz, CA). 

Sequencing and Mass Spectrometric Genotyping.  PCR reactions for each exon and flanking 

intronic sequences contained 5 ng of genomic DNA, 1X HotStar Buffer, 0.8 mM dNTPs, 1 mM 

MgCl2, 0.2U HotStar Enzyme (Qiagen, Valencia, CA), and 0.2 µM forward and reverse primers 

in a 6 or 10 µL reaction volume.  PCR cycling parameters were: one cycle of 95°C for 15 min, 

35 cycles of 95°C for 20 seconds, 60°C for 30 seconds and 72°C for 1 minute, followed by one 

cycle of 72°C for 3 minutes.  The resulting PCR products were sequenced using bi-directional 

dye-terminator fluorescent sequencing with universal M13 primers.  Sequencing fragments were 

detected via capillary electrophoresis using ABI Prism 3730 DNA Analyzer (Applied 

Biosystems, Foster City, CA).  PCR and sequencing were performed at Agencourt Bioscience 

Corporation (Beverly, MA) or at the Broad Institute of Harvard and MIT (Cambridge, MA). 

Forward (F) and reverse (R) chromatograms were analyzed in batch with Mutation Surveyor 

2.51 (SoftGenetics, State College, PA), followed by manual review. A minimum of 21 of 28 

(75%) EGFR exon sequence coverage was accomplished for 151 samples.  An exon for each 

individual sample was considered covered if 90% of the sequence trace within the exon had a 

phred quality score of 30 or greater, a signal to background noise ration of 15% or less, and 

signal intensity greater than 1/4 of the signal intensity of the sequencing plate.  High quality 

sequence variations found in one or both directions were scored as candidate mutations.  Exons 

harboring candidate mutations were reamplified from the original DNA sample and resequenced. 

For mass spectrometric genotyping, PCR and extension primers (Supplementary Table S2) were 
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designed using SpectroDESIGNER software (Sequenom, San Diego, CA). Unincorporated 

nucleotides from PCR reactions were dephosphorylated with shrimp alkaline phosphatase 

(Amersham) followed by primer extension with ThermoSequence polymerase (Amersham, 

Piscataway, NJ). Primer extension reactions were loaded onto SpectroCHIPs (Sequenom) and 

analyzed using a MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass 

spectrometer (SpectroREADER, Sequenom) [16]. Mass spectra were processed with 

SpectroTYPER (Sequenom) to determine genotypes based on peaks intensities corresponding to 

the expected extension products. 

Affymetrix 100k SNP arrays.  Genomic DNA was processed and hybridized following the 

guidelines of the manufacturer (Affymetrix) and arrays were scanned with a GeneChip Scanner 

3000. Genotyping calls and signal quantification were obtained using GeneChip Operating 

System 1.1.1 and Affymetrix Genotyping Tools 2.0 software. Data were normalized at the probe 

level to a baseline array with median signal intensity using invariant set normalization. After 

normalization, the signal values for each SNP in each array were obtained with a model-based 

(PM/MM) method [17]. Signal intensities at each probe locus were compared with a set of 

normal reference samples representing 36 ethnically matched individuals to generate log2 ratios. 

Log2 ratios were smoothed using the break-point analysis method in the R package GLAD (Gain 

and Loss Analysis of DNA) [18]. Regions were considered amplified if their smoothed log2 

ratio exceeded 0.3 (half the variation seen with a single-copy gain).  

Fluorescence-in-situ-hybridization (FISH). Dual-probe fluorescence in situ hybridization was 

performed on paraffin-embedded sections with locus-specific probes for EGFR and the 

centromere of chromosome 7 as previously described [4]. 
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Determination of EGFRvIII expression.  RNA was extracted from fresh frozen tumor samples 

and EGFRvIII expression determined by two independent RT-PCR assays for each sample. 

Primer pairs included: #1F 5' CTT CGG GGA GCA GCG ATG CGA C 3', #1R 5' ACC AAT 

ACC TAT TCC GTT ACA C 3', #2F GAGCTCTTCGGGGAGCAG, and #2R 

GTGATCTGTCACCACATAATTACCTTTCTT. EGFRvIII expression was also examined by 

immunohistochemistry and/or immunoblotting depending on the availability of tissue samples. 

Quantification of mutant EGFR alleles.  The abundance of missense and wildtype EGFR alleles 

in tumor DNA samples was determined by PCR-cloning and sequencing of respective EGFR 

exons (see Table S2). PCR products were ligated into PCR2.1-Topo vectors (Invitrogen) and 

transformed into E.coli. After transformation, bacteria were plated onto selection plates and 

grown overnight. 65-94 colonies were isolated for each DNA sample using a colony picking 

robot (QPix2, Genetix Limited), grown overnight, and bidirectionally sequenced at the Broad 

Institute. Sequence traces were analyzed using Mutation Surveyor software (SoftGenetic Inc.). 

EGFR Expression Constructs.  Retroviral EGFR expression constructs containing puromycin 

(pBabe-puro-EGFR) [19] or neomycin-resistance genes (pLXSN-neo-EGFR) [20] were used for 

site-directed mutagenesis using the Quick-Change Mutagenesis XL kit (Stratagene, La Jolla, 

CA). pBabe-Puro-based viral stocks were generated by transfecting the Phoenix 293T packaging 

cell line (Orbigen, San Diego, CA) with the pBabe-Puro retroviral constructs using 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA).  pLXSN-Neo-based viral stocks were generated 

by transfecting the human amphotrophic 293-T cell line with pLXSN-Neo retroviral constructs 

using Lipofectamine 2000 (Invitrogen). Supernatants were collected 24-48 hours post-

transfection, filtered (0.45 µM), and used to infect NIH-3T3 cells, Ba/F3 cells, and human 

astrocytes. 
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Expression of EGFR alleles in NIH-3T3 cells.  Cells cultured in DMEM supplemented with 10% 

calf serum were infected with pBabe-Puro-based viral stock in the presence of polybrene.  Two 

days after infection, cells were selected in puromycin (2 µg/ml) for 3 days.  Pooled NIH-3T3 

cells stably expressing respective EGFR alleles at comparable EGFR protein levels were 

examined for their ability to induce colony formation in soft agar and tumor growth in nude 

mice.  For soft agar assays, 1x105 NIH-3T3 cells were suspended in a top layer of DMEM 

supplemented with 10% calf serum and 0.4% Select Agar (Gibco/Invitrogen) and plated on a 

bottom layer of DMEM supplemented with 10% calf serum and 0.5% Select Agar.  EGF (10 

ng/ml) was added to the top agar where indicated in the figure legend.  Pictures of colonies were 

taken 2-3 weeks after plating. Colonies were counted from ten random images (40x 

magnification) taken from each well. Colonies were counted from three replicate wells with the 

average number represented.  In-vivo tumorigenicity assays were performed in three mice (two 

injections/mice) for each cell line.  For each injection, 2 x 106 cells were injected subcutaneously 

into each nude mice (Taconic, Germantown, NY) and three-dimensional tumor volumes 

calculated 3-4 weeks following injection. 

Expression of EGFR alleles in Ba/F3 cells. Murine Ba/F3 pro-B lymphocytes [21] were cultured 

in RPMI 1640 (Cellgro, Herndon, CA) supplemented with 10% FCS, 100 units/mL penicillin 

and 100 µg/mL streptomycin, 1% L-glutamine, and 10% WEHI3B conditioned media.  To 

derive Ba/F3 subclones stably expressing various EGFR alleles, Ba/F3 cells were spinfected with 

pLXSN-neo-EGFR-based (Figure 3A) or pBabe-puro-EGFR- based (in Figure 4D) viral 

supernatants and spinfection repeated after 48 hours.  Cells were selected for neomycin or 

puromycin resistance and maintained in the presence of IL-3.  IL-3 independent subclones were 

derived through prolonged passage in IL-3 depleted media.  To determine sensitivity to erlotinib, 
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1 x 103  cells were seeded in 96-well flat bottomed plates with the indicated concentrations of 

erlotinib. Cell proliferation was assessed 48 hours post-plating using the WST-1 assay (Roche, 

Indianapolis, IN).  Each data point represents the median of six replicate wells for each Ba/F3 

subclone and erlotinib concentration. 

Expression of EGFR alleles in human astrocytes.  Viral supernatants (pLXSN-neo-EGFR) were 

used to infect immortalized human astrocytes expressing the catalytic subunit of the telomerase 

holoenzyme and human papillomavirus 16 E6/E7 [22].  Astrocytes were then selected in G418 

(Invitrogen) for approximately 10 days.   

RESULTS 

Missense Mutations in Glioblastoma Cluster in the Extracellular Domain of EGFR 

Encouraged by the recent success in identifying oncogenic kinase mutations through 

resequencing of kinase-encoding genes [15,23,24], we sequenced the entire coding sequence of 

EGFR in 143 human glioma samples and eight glioblastoma cell lines.  Analysis of the initial 

Sanger sequencing results in these 151 samples revealed several novel sequence variations in the 

coding region of the EGF receptor.  To validate these candidate mutations via a complementary 

method, all DNA samples were reexamined using allele-specific genotyping by matrix-assisted 

laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry.  In all, we 

identified EGFR missense mutations in 19/132 (14.4 %) glioblastomas, 1/8 (12.5 %) 

glioblastoma cell lines, and none (0/11) in lower grade gliomas.  Remarkably, only one tumor 

sample harbored a missense mutation in the EGFR kinase domain (L861Q), the location of 

EGFR mutations in lung cancer, whereas the remainder of the EGFR mutations (18/132 

glioblastomas) were located in the extracellular ligand-binding (I, III) or cysteine-rich (II, IV) 
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domains of the receptor (Figure 1A). Two evolutionarily highly conserved amino acid residues 

(Supplementary Figure S1) were affected by mutations in five samples each (R108 and A289). 

Examination of peripheral blood DNA, matched to the tumor DNA by genotyping of 24 SNP 

loci, showed that eight of the twelve distinct missense mutations were unambiguously somatic 

and one mutation (E330K) was germline.  Three additional missense mutations (A289D, A289T, 

and R324L) were found in tumors for which no normal tissue was available (Table 1). None of 

the missense mutations were detected in germline DNA from 270 normal control individuals.   

To define which fraction of the EGFR pool represented the mutant allele in gliomas with 

EGFR missense mutations, we employed a PCR-cloning strategy previously used by our 

laboratories for mutation detection in clinical samples [25].  The mutant EGFR allele represented 

30- 98 % of the receptor pool in two thirds of all examined cases (10/16) and > 50 % in at least 

one tumor representing the most common genotypes R108K, T263P, A289V, and G598V (Table 

1). Lower abundance of the mutant EGFR allele in other samples might be due to contaminating 

stromal tissue since genomic DNA was extracted from frozen tumor aliquots without prior 

microdissection. 

We also genotyped genomic DNA from 119 primary lung tumors for the presence of the 

EGFR ectodomain mutations.  While 16/119 (13.4 %) of these lung tumor samples harbored 

mutations in the EGFR kinase domain, we found none of the glioma-related EGFR ectodomain 

mutations in this sample set. 

EGFR Ectodomain Mutations are Associated with Increased EGFR Gene Dose 

Since EGFR is amplified in about 40% of human glioblastomas [8], we determined the 

relationship between EGFR missense mutation and EGFR gene dose in our tumor samples. 

10 



10/17 (58.8 %) tumors with EGFR missense mutations showed evidence for EGFR amplification 

by fluorescence-in-situ hybridization (FISH) and/or Affymetrix 100K single nucleotide 

polymorphism (SNP) genotyping arrays (Figure 1B)(Table 1). This distribution suggested that 

EGFR missense mutations are associated with EGFR amplification and raised the question 

whether EGFR missense mutations in glioblastoma co-occur with or are mutually exclusive with 

the EGFRvIII mutation, which is almost exclusively found in glioblastomas with increased gene 

dosage [26]. Using at least two independent assays for EGFRvIII determination, we identified 

EGFRvIII in 13/46 (28.3 %) of gliomas without EGFR missense mutation and 1/16 (6.3 %) 

tumors with EGFR missense mutation (Figure 1C)(Table 1); note that this tumor showed vastly 

lower levels of EGFRvIII (Figure 1C, lane 12). These findings suggest that EGFR ectodomain 

mutations occur independently of EGFRvIII in glioblastoma and provide an alternative 

mechanism for EGFR activation in this disease. 

EGFR Ectodomain Mutants are Oncogenic 

To test the oncogenicity of the glioma-related EGFR missense mutations, we transduced 

NIH-3T3 fibroblasts with retroviruses encoding either wild-type EGFR or selected EGFR 

missense mutants (R108K, T263P, A289V, G598V, L861Q).  Ectopic expression of all EGFR 

mutants examined in NIH-3T3 cells conferred anchorage-independent colony formation in soft 

agar (Figure 2A). In contrast, expression of wild-type EGFR induced a transformed phenotype 

only in the presence of exogenous EGF, as previously reported [27,28].   

To further analyze the oncogenic potential of the EGFR mutants, NIH-3T3 subclones 

stably expressing mutant receptors (R108K, T263P, A289V, G598V, L861Q) were inoculated 

subcutaneously into nude mice.  NIH-3T3 cells infected with empty vector or wildtype EGFR– 
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expressing virus did not yield any measurable tumors within the four-week observation period. 

In contrast, NIH-3T3 cells expressing each of the tested EGFR missense mutants produced large 

tumors at the inoculation site in all mice within three to four weeks (Figure 2B). 

EGFR ectodomain mutants are basally phosphorylated and are responsive to ligand. 

Signal transduction through EGFR is determined by its basal catalytic activity, receptor 

activation by ligand, and signal termination through intracellular compartmentalization of the 

receptor-ligand complex, receptor dephosphorylation, and degradation [29]. To explore the 

biochemical basis for the gain of function observed with EGFR ectodomain mutants, we first 

examined the basal catalytic activity of A289V-EGFR in transiently transfected 293T cells using 

EGFR autophosphorylation as a readout for receptor activation.  EGFR autophosphorylation was 

determined by measuring the total phosphotyrosine content of the immunoprecipitated receptor 

(Figure 3A, left panel) and by immunoblotting of whole cell lysates with phosphosite-specific 

anti-EGFR antibodies (Figure 3A,right panel). Compared to wildtype EGFR, the ectodomain 

mutant A289V-EGFR showed a marked increase in receptor autophosphorylation in the absence 

of ligand or serum.  We subsequently examined a more extensive panel of EGFR missense 

mutants (T263P, A289V, G598V, L861Q) in immortalized human astrocytes [22] stably 

transduced with these receptors.  Compared to astrocytes overexpressing wildtype EGFR, 

sublines expressing EGFR missense mutants showed an increased phosphotyrosine content of 

EGFR and several other unidentified proteins under serum-free conditions (Figure 3B). 

We also expressed selected EGFR mutants (R108K, T263P, A289V, G598V, L861Q) in 

murine hematopoietic cells (Ba/F3 cells) which do not express any EGF receptor family 

members [20] but otherwise retain functional properties of the EGF-signaling pathway [30,31] 
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[32] [33]. Consistent with our findings in 293T cells and astrocytes, all examined EGFR 

ectodomain mutants showed increased tyrosine phosphorylation under serum-starved conditions 

and were responsive to exogenous EGF (Figure 3C). We also noted that EGF stimulation led to 

a more pronounced drop of EGFR levels in Ba/F3 cells expressing wildtype EGFR than in 

subclones expressing EGFR ectodomain mutants (Figure 3C), reminiscent of the impaired 

ligand-induced receptor downregulation reported for selected EGFR kinase domain mutants [33]. 

Sensitivity of EGFR Ectodomain Mutants to EGFR Kinase Inhibitors 

The presence of identical missense mutations in multiple patient samples and their 

oncogenicity in standard transformation assays suggest that these mutants play a role in 

gliomagenesis.  It also raises the question whether these mutations might sensitize transformed 

cells to EGFR kinase inhibitors.  Ba/F3 cells provide a unique model system to examine kinase 

inhibitor sensitivity [34-37] because stable expression of oncogenic kinases in these cells can 

relieve them from their intrinsic dependence on interleukin-3 (IL-3) for survival [21] [38].  As 

expected from our results in NIH-3T3 cells, expression of the tested EGFR missense mutants but 

not wildtype EGFR was able to relieve Ba/F3 cells from IL-3 dependence. Addition of the 

EGFR kinase inhibitor erlotinib to the media had little or no effect on the viability of parental 

Ba/F3 cells growing in the presence of IL-3 or on Ba/F3 cells expressing the drug-resistant 

EGFR double-mutant L858R/T790M-EGFR.  However, erlotinib did induce dose-dependent cell 

death in Ba/F3 subclones expressing the EGFR ectodomain mutants  (missense and vIII 

truncation) or EGFR kinase domain mutants (L858R and L861Q)(Figure 4A). Of note, erlotinib

induced cell death of Ba/F3 cells expressing EGFR ectodomain mutants occurred at IC-50 values 

of 50-150 nM, drug concentrations that are well below the concentrations achieved in human 
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plasma [39]. These data suggest that EGFR missense mutants sensitize transformed cells to 

EGFR kinase inhibitors similar to EGFRvIII or lung cancer-related kinase domain mutants, both 

of which have been associated with clinical responses to EGFR kinase inhibitor therapy 

[4,15,40,41]. 

We recently reported the results of a glioblastoma clinical trial with EGFR kinase 

inhibitors which associated clinical responses to the co-expression of EGFRvIII and PTEN [4]. 

To investigate whether clinical responses might also be linked to the presence of EGFR 

ectodomain mutants, we reexamined all available tumor DNA samples from this clinical trial. 

We identified the ectodomain mutant R108K-EGFR in one of seven (14%) gliomas that 

responded to erlotinib. This tumor, however, also expressed EGFRvIII, raising the possibility of 

independent clones arising from a common progenitor with EGFR amplification.  We also 

identified the R108K EGFR mutation in 1/15 (7 %) gliomas that failed EGFR kinase inhibitor 

therapy, but loss of PTEN in this tumor provides a potential explanation for treatment failure 

(Supplementary Table S3). Larger clinical trials are required to ascertain the contribution of 

EGFR missense mutants to EGFR kinase inhibitor response in glioblastoma.  

DISCUSSION 

We have identified novel oncogenic missense mutations in the ectodomain of EGFR in 

glioma.  The association of these mutations with increased EGFR gene dosage raises the 

question whether similar ectodomain missense mutations might exist in other malignancies with 

EGFR amplification or polysomy of chromosome 7.  More broadly, our results suggest that 

ectodomain missense mutations in other tyrosine kinase genes may be transforming events in 

14 



multiple cancers, and argue for an extension of current kinase gene resequencing efforts beyond 

the kinase domains [42,43]. 

The ligand-independent basal phosphorylation of the EGFR missense mutants in our 

study is consistent with their ability to confer NIH3T3 cells with the ability to grow in soft agar 

in the absence of exogenous EGF.  Whether all EGFR ectodomain mutants share a common 

mechanism of oncogenic receptor conversion warrants further study.  A common mechanism is 

suggested by the structural observation fact that many of the resulting amino-acid substitutions 

map to interdomain interfaces.  R108K and A289V/D/T occur at the domain I/II interface, P569L 

and G598V occur at the domain II/IV contact, and T263P occurs in domain II just prior to the 

extended loop that contacts domain IV (Figure 4b). Differences in constitutive receptor activity 

(G598V>A289V>T263P), on the other hand, point toward alternative mechanisms of oncogenic 

receptor conversion. 

Three of the EGFR missense mutations (P596L, G598V, A289V) were previously 

observed in smaller cohorts of glioblastoma tumors [26] [44].  The identification of additional 

ectodomain mutations in our study might have been facilitated by the large number of tumors, 

near complete coverage of the EGFR coding sequence, and use of MALDI-TOF mass spec 

genotyping in addition to Sanger sequencing.  Since most of the patients in our study were of 

Caucasian descent, we were unable to establish whether the prevalence of EGFR ectodomain 

mutations in glioblastoma might be affected by ethnicity as has been shown for EGFR kinase 

domain mutations. The distribution of EGFR missense mutations in glioblastoma (largely 

extracellular) and lung cancer (exclusively kinase domain) suggests fundamental differences in 

oncogenic EGFR signaling between these two tumor types.  Importantly, however, both classes 

of mutants – as well as EGFRvIII - appear to sensitize transformed cells to EGFR kinase 
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inhibitors in a preclinical model system that has been predictive of clinical responses [35] [45]. 

Based on the experience with kinase inhibitors for chronic myeloid leukemia, the development of 

sensitive methodologies to monitor the EGFR pool before and during therapy [46] will constitute 

an important step to advance the current use of EGFR kinase inhibitors for cancer. 
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FIGURE LEGENDS 

Figure 1. EGFR missense mutations in glioblastoma cluster in the extracellular domain and 

are associated with increased EGFR gene dose. 

(A) Location of missense mutations within the EGF receptor protein in a panel of 151 gliomas 

(132 glioblastomas, eleven WHO grade III gliomas, and eight glioblastoma cell lines). Each 

diamond represents one sample harboring the indicated mutation. Amino acid (AA) numbers are 

based on the human EGFR precursor protein (accession number P00533). Ligand-binding 
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domains (I and III), cysteine-rich domains (II and IV), kinase domain (kinase), and the 

extracellular deletion mutant EGFRvIII [47] are indicated as reference.  (B) Increased EGFR 

gene dose in tumors harboring EGFR missense mutations. Left. High-resolution view of 

Affymetrix 100K SNP array at the EGFR gene locus for ten glioblastoma tumors and three 

normal controls (sample numbers are indicated above each column).  EGFR mutation and 

estimated gene copy number are indicated below each column.  Right.  Comparison of EGFR 

gene copy number determination by SNP array (Y-axis, EGFR log 2 ratios) and FISH.  AMP = 

amplified, NON-AMP = non amplified.  (C)  RT-PCR for EGFRvIII and full-length EGFR in 

fourteen fresh frozen glioblastoma tumors (see Methods). The upper band represents full-length 

EGFR (1044 bp), the lower band EGFRvIII (243 bp), and the inset shows glyceraldehyde-3

phosphate dehydrogenase (GAPDH) RT-PCR results. 

Figure 2. EGFR missense mutations are transforming and tumorigenic 

(A) Anchorage-independent growth of NIH-3T3 cells expressing various EGFR alleles. (mean 

number of colonies +/- standard deviation).The lower panel shows EGFR and actin immunoblots 

of whole cell lysates from NIH-3T3 subclones plated in soft agar.  (B) Tumorigenicity of NIH

23 



D
46

N
/G

63
R

R
10

8K

R
10

8K

R
10

8K

T2
63

P

A
28

9D

A
28

9T

A
28

9V

R
32

4L

L8
61

Q

C
on

tr
ol

 #
1

C
on

tr
ol

 #
2

C
on

tr
ol

 #
3 

2.6 2.5 2.5 2.1 2.4 0.7 0.2 2.1 0.4 2.7 0.1 0.0 0.1Log2 Ratio 

EGFR 

S0
01

05
0

S0
01

07
3

S0
01

09
2

S0
03

76
3

S0
01

10
2

S0
01

09
7

S0
01

09
5

S0
04

38
4

S0
02

02
4

S0
01

07
1

N
or

m
al

 1

N
or

m
al

 2

N
or

m
al

 3

S
N

P
 a

rr
ay

:
EG

FR
 lo

g2
 ra

tio
 

by FISH 
GAPDH 

Figure 1

-1 EGFRvIII 
EGFR Status 

No EGFR missense mutations R108K-EGFR 

2 Patient # 1 2  3 4 5 6 7 8 9  10 11 12  13 14 

1 

EGFR 
0 

NON- AMP
AMP

A.) 

B.) C.)
3 



Table 1

Sample # Histology Exon Nucleotide Change AA Change Somatic Mutation detection Abundance of 
mutant allele2 

EGFR gene dose EGFRvIII 
Sanger MALDI-TOF FISH SNP-array3 

S001050 GBM 2 G136A, G187C D46N, G63R Somatic Het + 81/95 (85.3 %) AMP 2.63 negative 
S001073 GBM 3 G323A R108K Somatic Hom + 88/90 (97.8 %) AMP 2.52 negative 
S001076 GBM 3 G323A R108K Somatic Het1 + 10/82 (12.2 %) NON AMP n.d. negative 
S001092 GBM 3 G323A R108K Somatic Het1 + 16/93 (17.2 %) AMP 2.5 negative 
S001094 GBM 3 G323A R108K Somatic Het1 + 7/90 (7.8 %) NON AMP n.d. negative 
S003763 GBM 3 G323A R108K Unknown Het1 + 3/94 (3.2 %) AMP 2.058 positive 
S001067 GBM 7 A787C T263P Somatic Hom + 83/92 (90.2 %) n.d. n.d. n.d. 
S001102 GBM 7 A787C T263P Somatic Het + 69/92 (75 %) AMP 2.4 negative 
S001103 GBM 7 A787C T263P Somatic Het1 + 3/65 (4.6 %) AMP n.d. negative 
S001097 GBM 7 C866A A289D Unknown Het + n.d. AMP 0.72 negative 
S001095 GBM 7 G865A A289T Unknown Het + n.d. NON AMP 0.17 negative 
S001090 GBM 7 C866T A289V Somatic Het1 + 3/82 (3.7 %) NON AMP n.d. negative 
S001108 GBM cell line 7 C866T A289V Unknown Het + 31/92 (33.7 %) n.d. n.d. negative 
S004384 GBM 7 C866T A289V Unknown Het + 83/90 (92.2 %) AMP 2.1 negative 
S002024 GBM 8 G971T R324L Unknown Het n.d. n.d. n.d. 0.4 negative 
S001026 GBM 8 G988A E330K Germline Het + 38/94 (40.4 %) NON AMP n.d. negative 
S003577 GBM 15 C1787T P596L Somatic Het + 37/89 (41.6 %) NON AMP n.d. negative 
S001018 GBM 15 G1793T G598V Somatic Het n.d. 48/94 (51.1 %) AMP n.d. negative 
S001005 GBM 15 G1793T G598V Unknown Hom + 77/92 (83.7 %) NON AMP n.d. n.d. 
S001071 GBM 21 T2582A L861Q Somatic Het + n.d. AMP 2.49 n.d. 

1, detected with sub-threshold signal; 2, number of colonies with mutant/number of colonies with wildtype EGFR; 3, smoothened log2 ratio at the EGFR locus 

Abbreviations: AA, amino acid; FISH, fluorescent in-situ hybridization; GBM, glioblastoma; Het, heterozygous; Hom, homozygous; MALDI-TOF, matrix-assisted laser 
desorption/ionization time-of-flight mass spectrometry; n.d., not determined (failed reaction or sample not available); SNP, single-nucleotide polymorphism 
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Single nucleotide polymorphism
 array analysis of cancer
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Purpose of review 

Classifying tumors and identifying therapeutic targets 

requires a description of the genetic changes underlying 

cancer. Single nucleotide polymorphism (SNP) arrays 

provide a high-resolution platform for describing several 

types of genetic changes simultaneously. With the 

resolution of these arrays increasing exponentially, they are 

becoming increasingly powerful tools for describing the 

genetic events underlying cancer. 

Recent findings 

The ability to map loss of heterozygosity (LOH) and overall 

copy number variations using SNP arrays is known. 

Techniques have recently been developed to map LOH at 

high resolution in the absence of paired normal data. Copy 

number variations described by SNP array studies are now 

reaching resolutions enabling the identification of novel 

oncogenes and tumor suppressor genes. The ability to 

determine allele-specific copy number changes has only 

recently been described. Moreover, SNP arrays offer a high-

throughput platform for large-scale association studies that 

are likely to lead to the identification of multiple germline 

variants that predispose to cancer. 

Summary 

SNP arrays are an ideal platform for identifying both somatic 

and germline genetic variants that lead to cancer. They 

provide a basis for DNA-based cancer classification and 

help to define the genes being modulated, improving 

understanding of cancer genesis and potential therapy 

targets. 
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Introduction 
The understanding that cancer is a set of genetic diseases 

has led to increasing efforts to describe the genetic 

alterations underlying different cancers, both to identify 

therapeutic targets and to develop a robust classification 

system that reflects underlying biology. The somatic 

genetic alterations underlying cancer divide into several 

types, including point mutations and small insertion/ 

deletion events, translocations, copy number changes, 

and loss of heterozygosity (LOH). Single nucleotide 

polymorphism (SNP) arrays offer the ability to define 

simultaneously the copy number changes and LOH 

events occurring in a tumor, at high resolution and 

throughout the genome, according to the two papers 

originally describing copy number measurements from 

SNP array [1,2]. As such, they offer a powerful and 

increasingly popular platform for oncogene and tumor 

suppressor gene (TSG) discovery, as well as cancer 

classification. In addition, a new generation of germline 

association studies using SNP arrays is likely to identify 

risk factors and biological mechanisms for the develop-

ment of cancer. In this review, we will describe currently 

available high-density SNP array technologies, loss of 

heterozygosity analysis methods and applications, copy 

number analysis including allele-specific copy numbers, 

and the potential use of these arrays in identifying cancer-

predisposing germline variants. 

Background to SNP arrays 
Accumulations of point mutations during evolution, in 

concert with random selection, have made SNPs the most 

common form of genetic variation in the human genome. 

A single base polymorphism is referred to as an SNP 

when the frequency of the minor allele exceeds 1% in at 

least one population; otherwise it is considered a variant 

or mutation [3]. It is estimated that there exist about 

10 million SNPs throughout the genome, for an average 

of one SNP every 400–1000 base pairs [3]. Currently, 

about 5.6 million have been typed (dbSNP Build ID: 

126), about half of which are estimated to have a minor 

allele frequency over 10% [4]. 

SNPs on a small chromosomal segment tend to be trans-

mitted as a block, forming a haplotype. This correlation 

between alleles at nearby sites is known as linkage 

disequilibrium [5], and enables the prediction of the 

genotypes at a large number of SNP loci from known 

genotypes at a smaller number of representative SNPs, 

called ‘tag SNPs’ or ‘haplotype tag SNPs’ [6]. This 

reduction in the complexity of genetic variation between 
1 
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Figure 1 View of a probe set for a single nucleotide polymorph-

ism showing a homozygous ‘A’ call 

On this array, 40 oligonucleotide probes are tiled for each SNP being 
interrogated, including perfect match (pm) and mismatch (mm) probes 
for each allele. The SNP position slides 50 to 30 among the probes. The 
fluorescence pattern indicates which alleles are present; the intensity 
indicates the quantity of bound DNA. 
individuals enables much more efficient and eco

nomical determination of an individual’s overall geno

type: roughly 500 000 tag SNPs are adequate to fully 

genotype an individual with European ancestry [7]. 

For the study of germline genetic susceptibility to com

plex diseases, oligonucleotide arrays have been devel

oped to interrogate such large numbers of SNP markers 

in a high-throughput, highly parallel fashion [8,9��,10��]. 

These arrays specifically detect the two different alleles 

of each SNP (an example is shown in Fig. 1). The use of 

these arrays in mapping somatic alterations in cancer, as 

opposed to germline variations in normal tissue, was 

suggested by three features: (i) their genotyping ability 

allows for analysis of LOH; (ii) for some of these arrays, 

copy number variations can be determined from signal 

intensities reflecting levels of DNA hybridization; and 

(iii) the density of SNP loci being interrogated allows for 

very high-resolution analysis. 

High-throughput genotyping technologies 
Advances in genotyping technology have enabled 

approximately five-fold yearly increases in the number 

of SNPs one can genotype in parallel in a single exper

iment, to the point that current methods support geno

typing of over half a million SNPs across the genome 

simultaneously. The two major technologies in this 

regard involve oligonucleotide probes either spotted on 

gene chips (Affymetrix) or adsorbed on beads (Illumina). 

Affymetrix SNP arrays, adapted from the microarray 

hybridization chip technology utilized for gene expres

sion studies, are commercially available in 10 000, 100 000 

and 500 000 SNP loci format. These arrays are manufac

tured using a photolithography process and contain up to 

40 separate 25-mer oligonucleotide probes for each SNP 

locus, representing both mismatch and perfect match 

probes. Genomic DNA is prepared by restriction digest 

followed by adapter ligation and single-primer polymer

ase chain reaction (PCR), to provide amplification of a 
reduced representation of the genome. After DNA 

labeling and hybridization, fluorescence intensities are 

measured for each allele of each SNP [10–12]. In con

trast, on Illumina arrays allele-specific oligonucleotide 

probes are adsorbed to microbeads arranged on a micro-

array. DNA is prepared by F29-based whole-genome 

amplification, followed by fragmentation and hybrid

ization to the array. Signal intensities are obtained by 

incorporating fluorescent nucleotides as these fragments 

are extended on the array. This technology is more 

amenable to custom-designed arrays [9��,13]. Prede

signed arrays are also available to genotype 109 000, 

240 000, 317 000 or 550 000 SNP loci. 

These platforms generally require high-quality DNA 

from fresh or fresh frozen samples. Genotyping of 

DNA from formalin-fixed paraffin-embedded (FFPE) 

tissue has been performed in microarray format at lower 

SNP densities, including 1500 SNPs across the genome 

using Affymetrix arrays and DNA prepared by multiplex 

PCR [14–16], and 6000 SNPs across the genome using 

Illumina arrays without whole genome amplification [17]. 

The ability to robustly amplify lower-quality DNA from 

FFPE tissue, to amounts and levels of homogeneity that 

allow for a very high-resolution analysis, has, however, 

been elusive and continues to be the focus of ongoing 

research. 

Determining LOH with and without paired 
normal DNA 
LOH, the somatic conversion of heterozygous germline 

alleles to homozygosity, represents a key step in the 

inactivation of multiple TSGs [18]. Traditionally, loci 

harboring LOH have been determined by genotyping 

microsatellite markers. The higher density of SNP 

makers, however, enables detection of LOH at much 

higher resolution, and LOH mapping is increasingly 

being performed using high-resolution SNP arrays 

[14,19,20]. The most common and straightforward 

method is to directly compare genotypes between tumor 

and paired germline DNA (Fig. 2A). Only SNPs that are 

heterozygous in the germline are informative as to 

whether LOH has taken place. Various methods, such 

as Hidden Markov Model-based and counting methods, 

have been applied to define the boundaries of the regions 

undergoing LOH, based upon the distribution of SNPs in 

which LOH is directly observed [15]. To date, such 

analyses have been used to greatest effect to classify 

tumors and understand their progression. Classification 

schemes based upon LOH and hierarchical clustering 

have been used in the settings of lung cancer cell lines 

[21] and prostate cancer [14]. SNP arrays have been used 

to characterize LOH progression in samples from chil

dren with acute lymphoblastic leukemia who relapse 

after chemotherapy [22], suggest a common precursor 

to biphasic malignant components of Phylloides tumors 
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Figure 2 Determination of loss of heterozygosity from nucleotide polymorphism array data with and without paired normal data 

Data from chromosome 12 from a single prostate tumor and its paired normal are presented. Each SNP locus is represented as a horizontal line, 
arranged in order from the p to q termini and colored according to the genotype or LOH call. (a) Direct comparison of data between the tumor and its 
paired normal reveals heterozygous loci in the normal that turn homozygous in the tumor (called LOH in the comparison view) and other heterozygous 
loci in the normal that remain heterozygous in the tumor (called ‘retention’ in the comparison view). Loci that are homozygous in the normal are 
noninformative in the comparison. The distribution of LOH and retention calls reveals that the p arm has undergone regional LOH whereas the q arm is 
retained. (b) The regions of LOH and retention in this chromosome can also be inferred from the unpaired tumor data, by consideration of the frequency 
of heterozygous calls in each region. 
of the breast [20], and suggest that loss of imprinted loci 

in atypical adenomas may be an intermediate in the 

adenoma-carcinoma progression sequence in thyroid 

oncogenesis [23]. Moreover, SNP array-based analyses 

have shown that although LOH events are common in 

breast cancer tumor cells, they are infrequent in neigh

boring stromal elements [24]. 

An advantage of SNP arrays is that they provide marker 

densities that enable the identification of regions of LOH 

without the use of paired normal DNA [25�] (Fig. 2B). In 

this case, statistical analyses are applied to identify strings 
of consecutive homozygous SNPs that are longer than 

would be expected to appear by chance alone. As such, 

every SNP is informative; however, the resolution of 

such an analysis is necessarily lower than one can attain 

with paired normal data. Moreover, the haplotype block 

structure of the genome can lead to correlations between 

consecutive SNP genotypes, and therefore must be taken 

into account in the highest-density SNP array datasets 

[25�]. Such an approach is often necessary when paired 

germline DNA is not available (as in the case of most cell 

lines and xenografts). Moreover, because only tumors are 

being genotyped, genotyping costs are reduced by half. 
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Similar approaches have also been used with pancreatic 

cancer cell lines to generate high-resolution allelotype 

and deletion breakpoint maps [23] and with acute 

myeloid leukemias to identify prevalent regions of 

LOH [26]. 

LOH is not always equivalent to copy number losses. 

LOH can arise due to hemizygous deletion alone, or 

followed by gene duplication leading to copy-neutral 

LOH. Conversely, loss of a single chromosome in a 

hyperploid cell may give the appearance of a deletion 

but leave two remaining chromosomes with retention of 

heterozygosity. Up to 80% of LOH events in some 

sample sets reflect copy-neutral LOH [25�]. LOH is also 

predominantly copy-neutral at particular loci in certain 

tumor types, such as acute myeloid leukemia [26], medul

loblastoma [27], and basal cell carcinoma [28]. JAK2 is a 

specific target of copy-neutral LOH in myeloproliferative 
Figure 3 Determination of overall and allele specific copy number 

DNA copy number variations were determined by comparing locus-specific hy
intensities from normal genomes. (a) and (b) Log2 copy number ratios det
hybridization arrays are displayed for chromosome 20 of the BT474 breast ca
array types. The arrow denotes a hemizygous deletion that was further valid
numbers across the entire genome are displayed for the HCC95 lung adenoc
almost always seen to be due to an amplification of only one of the two all
diseases [29]. Conversely, high-level amplifications of a 

single allele can lead to the inability to detect the second 

allele (allelic imbalance), giving the false appearance of 

LOH. Therefore, an integrative analysis of LOH and 

copy number changes is imperative. 

Determining copy number variations on a 
genome-wide basis 
DNA copy number variations can be determined from 

many SNP array datasets by comparing the hybridization 

signal intensities at each SNP locus with corresponding 

signal intensities from normal genomes [1,2] (Fig. 3). The 

largest body of work exists for Affymetrix arrays, where 

several algorithms now exist to combine probe-level 

signal intensities to an overall SNP-level signal intensity 

reflective of underlying copy number. The earliest 

algorithms to be developed were dChipSNP [30], 

which determines signal intensities using a model-based 
variation 

bridization signal intensities in tumor genomes with corresponding signal 
ermined from 10K SNP arrays and cDNA-based comparative genomic 
rcinoma cell line. Similar copy number changes were identified using both 
ated by quantitative PCR. Adapted from [2�]. (c) Parent-specific copy 
arcinoma cell line. When the total copy number adds to more than 2, it is 
eles. Adapted from [41��]. 
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method originally developed for analysis of expression 

arrays [31] and Copy Number Analysis Tool [32], which 

compares signal intensities at the perfect match probes to 

signal intensity ratios between perfect match and mis

match probes. More recently, algorithms have been 

developed to reduce noise levels introduced by variations 

in conditions between experiments. These include Copy 

Number Analyzer for GeneChip (CNAG) [33�], Genomic 

Imbalance Map (GIM) [34�], and Copy Number Analysis 

with Regression And Tree (CARAT) [35�]. All of these 

consider signal intensities at an SNP locus to be depen

dent not only on the underlying copy number of the 

sample, but also take into account how well restriction 

digested fragments of varying lengths and GC contents 

amplify, under varying experimental conditions, during 

DNA preparation for hybridization to the array. 

With current SNP arrays interrogating over 500 000 loci 

across the genome, the resolution offered by these arrays 

matches or exceeds most state-of-the-art comparative 

genomic hybridization methods. Therefore, increasing 

numbers of tumors have been analyzed in this fashion. 

In prostate cancer, amplifications of TPD52 [36] and 

prosaposin [37] have been noted. In lung cancer, several 

regions of homozygous deletion and high-level amplifica

tion were observed [2]. In colon cancer, copy number 

changes were found to be associated with changes in gene 

expression [38]. The resolution afforded by these studies 

is beginning to allow identification of individual onco

genes and TSGs. For instance, MITF was shown to be an 

oncogene after amplifications were observed at this locus 

in an SNP array study of the NCI60 panel of cancer cell 

lines [39��]. More recently, amplifications of NOTCH3 

were noted in ovarian tumors by an SNP array analysis, 

and the functional role of NOTCH3 was suggested by 

the ability to suppress cell proliferation by inhibiting 

NOTCH3 [40�]. 

Allele-specific copy number determination 
In addition to determining overall copy number vari

ations, the presence of signal intensity data correspond

ing to each of the two alleles allows the determination of 

allele-specific copy numbers. Several algorithms now 

exist to do this. CNAG, GIM and CARAT require paired 

normal data from the same individual to perform this 

function; probe-level allele-specific quantitation [41��] 

does not. The ability to determine allele-specific copy 

numbers at heterozygous SNP loci enables determination 

of parent-specific copy numbers over larger regions, 

namely, that whether an amplified or deleted chromoso

mal region is derived preferentially from one parent 

(Fig. 3C). In fact, we found that when a region is 

amplified, the extra copies tend to be derived from a 

single parent, rather than both alleles being equally 

amplified [41��]. This may reflect preferential amplifica

tion of an allele harboring an activating mutation. More 
intriguing is the possibility that certain germline variants 

are preferentially amplified across tumors, not least 

because these germline variants would be candidate 

cancer risk alleles for lending a predisposition to 

developing cancer. 

Role of germline variants in cancer 
predisposition 
A more straightforward method of identifying cancer risk 

alleles is to perform association studies to identify germ-

line variants that segregate between populations with and 

without cancer. With SNP arrays reaching densities that 

enable whole-genome association studies, these arrays 

have now been used to identify common risk alleles for 

other diseases such as macular degeneration [42] and 

chronic lymphocytic leukemia [43]. These results have 

been especially interesting because they have implicated 

genes that appear to be involved in the development of 

these diseases [42]. The risk of developing cancer is 

known to have a genetic component, and common risk 

alleles for some cancers have already been identified 

using other genotyping methods [44]. With the high-

throughput genotyping enabled by SNP arrays, we 

expect them to be used to identify many more cancer 

risk alleles in the near future. Identification of these 

alleles will not only mark who is at risk for specific types 

of cancer, but also point to genes that may be targeted for 

their roles in the development of cancer [45]. 

Conclusion 
The current generation of SNP arrays interrogates �25 

SNPs per gene; this is expected to double in 2007 with 

the announcement by Affymetrix of the release of a 

1-million SNP array. At these densities, we have reached 

a critical phase in SNP array analysis of cancer, where we 

have attained a resolution that should enable the identi

fication of many more oncogenes and TSGs. Moreover, 

with the ability to simultaneously map regions of copy 

number changes and LOH in individual tumors, these 

arrays are likely to become invaluable tools for classifying 

individual cancers based upon a comprehensive charac

terization of the somatic genetic changes they have 

undergone. 

The major challenges to the field range from data gener

ation to analysis. Most importantly, the ability to generate 

robust data from FFPE will open up major opportunities 

to study large tumor archives with long-term clinical 

follow-up. The primary analytic challenge is presented 

by the sheer volume of data being generated, that increas

ingly requires highly automated tools to summarize these 

datasets and point to the most interesting findings. 

Furthermore, the opportunities offered by our newfound 

ability to determine allele-specific copy numbers have 

not yet been fully explored. A complete understanding of 

the cancer genome requires an integrated analysis of the 
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multiple types of alterations that may accrue. With the 

ability to simultaneously characterize LOH, overall copy

number changes, and allele-specific copy number 

changes, all at very high resolution, SNP arrays offer a 

unique platform for such an integrated analysis. 
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